
iOS Kernel PAC,
One Year Later

Brandon Azad, Google Project Zero

ARMv8.3-A Pointer Authentication

Pointer Authentication

0xfffffff01e335a5c

Pointer Authentication

0xfffffff01e335a5c

25 39

Pointer Authentication

0x2ab4ae701e335a5c

25 39

Pointer Authentication

0x2ab4ae701e335a5c

25 39

PAC instructions

PACIA X1, X8 Sign pointer in X1 with IA key and context X8

PACIZA X1 Sign pointer in X1 with IA key and context 0

PACIBSP Sign LR with IB key and context SP

AUTIA X2, X8 Authenticate signed pointer in X2 with IA key and context X8

XPACI X3 Strip the PAC from the pointer in X3 without validation

BLRAA X4, X8 Authenticate X4 with context X8, then branch-with-link

LDRAA X9, [X5] Authenticate X5 with context 0, then load 64-bit value into X9

RETAB Authenticate LR with IB key and context SP, then return

PAC in the iOS 12 kernel

PAC key use in XNU

IA Global code pointer Function pointers, vtable methods

IB Thread-local code pointer Return addresses

DA Global data pointer Vtable pointers

DB Thread-local data pointer (unused)

GA Generic data Thread saved state: PC, LR, CPSR

Virtual method calls

Signing saved thread state (kernel & user)

Verifying thread state signatures

Exception return

Best ROP
gadget ever!

Exception return

iOS 12 PAC bypasses

iOS 12 kernel PAC bypasses
PAC signing gadget 1

PAC bruteforce gadget 1

Thread state signing gadget 2

Unprotected indirect branch 1

Implementation bug 1

A Study in PAC, bypass #1: signing gadget
sysctl_unregister_oid
 ...
 LDR X10, [X9,#0x30]!
 CBNZ X19, loc_FFFFFFF007EBD330
 CBZ X10, loc_FFFFFFF007EBD330
 MOV X19, #0
 MOV X11, X9
 MOVK X11, #0x14EF,LSL#48
 AUTIA X10, X11
 PACIZA X10
 STR X10, [X9]

A Study in PAC, bypass #1: signing gadget
sysctl_unregister_oid
 ...
 LDR X10, [X9,#0x30]!
 CBNZ X19, loc_FFFFFFF007EBD330
 CBZ X10, loc_FFFFFFF007EBD330
 MOV X19, #0
 MOV X11, X9
 MOVK X11, #0x14EF,LSL#48
 AUTIA X10, X11
 PACIZA X10
 STR X10, [X9]

AUTIA doesn't fault;
AUTIA+PACIZA is a

signing gadget

A Study in PAC, bypass #2: bruteforce gadget
sysctl_unregister_oid
 ...
 LDR X10, [X9,#0x30]!
 ...
 MOV X11, X9
 MOVK X11, #0x14EF,LSL#48
 MOV X12, X10
 AUTIA X12, X11
 XPACI X10
 CMP X12, X10
 PACIZA X10
 CSEL X10, X10, X12, EQ
 STR X10, [X9]

A Study in PAC, bypass #2: bruteforce gadget
sysctl_unregister_oid
 ...
 LDR X10, [X9,#0x30]!
 ...
 MOV X11, X9
 MOVK X11, #0x14EF,LSL#48
 MOV X12, X10
 AUTIA X12, X11
 XPACI X10
 CMP X12, X10
 PACIZA X10
 CSEL X10, X10, X12, EQ
 STR X10, [X9]

Can be called
repeatedly until we
guess the right PAC

A Study in PAC, bypass #3: state signing gadget
copyio_error
 ...
 RETAB

__bcopyin
 PACIBSP
 STP X29, X30, [SP,#-0x10]!
 MOV X29, SP
 MRS X10, TPIDR_EL1 ;; thread
 LDR X11, [X10,#thread.recover]
 ADRL X3, copyio_error
 STR X3, [X10,#thread.recover]
 ...

A Study in PAC, bypass #3: state signing gadget
copyio_error
 ...
 RETAB

__bcopyin
 PACIBSP
 STP X29, X30, [SP,#-0x10]!
 MOV X29, SP
 MRS X10, TPIDR_EL1 ;; thread
 LDR X11, [X10,#thread.recover]
 ADRL X3, copyio_error
 STR X3, [X10,#thread.recover]
 ...

Unprotected code
pointer used for

control flow

A Study in PAC, bypass #4: unprotected branch
ipc_kmsg_clean_body
 ...
 ADR X25, jpt_FFFFFFF0079CFAF0
 ...
 BL ipc_port_release_receive
 ...
 CMP W9, #3 ; switch 4 cases
 B.HI def_FFFFFFF0079CFAF0
 LDRSW X9, [X25,X9,LSL#2]
 ADD X9, X9, X25
 BR X9 ; switch jump

A Study in PAC, bypass #4: unprotected branch
ipc_kmsg_clean_body
 ...
 ADR X25, jpt_FFFFFFF0079CFAF0
 ...
 BL ipc_port_release_receive
 ...
 CMP W9, #3 ; switch 4 cases
 B.HI def_FFFFFFF0079CFAF0
 LDRSW X9, [X25,X9,LSL#2]
 ADD X9, X9, X25
 BR X9 ; switch jump

Unprotected
indirect branch

A Study in PAC, bypass #4: unprotected branch
ipc_kmsg_clean_body
 ...
 ADR X25, jpt_FFFFFFF0079CFAF0
 ...
 BL ipc_port_release_receive
 ...
 CMP W9, #3 ; switch 4 cases
 B.HI def_FFFFFFF0079CFAF0
 LDRSW X9, [X25,X9,LSL#2]
 ADD X9, X9, X25
 BR X9 ; switch jump

Function call spills
X25 (jump table) to

the stack

Unprotected
indirect branch

A Study in PAC, bypass #5: state signing gadget
machine_thread_create(thread *thread, ...)
{
 user_state = zalloc(user_ss_zone);

 thread->machine.upcb = user_state;

 user_state = thread->machine.upcb;

 sign_thread_state(user_state,
 user_state->pc,
 user_state->cpsr,
 user_state->lr);
}

A Study in PAC, bypass #5: state signing gadget
machine_thread_create(thread *thread, ...)
{
 user_state = zalloc(user_ss_zone);

 thread->machine.upcb = user_state;

 user_state = thread->machine.upcb;

 sign_thread_state(user_state,
 user_state->pc,
 user_state->cpsr,
 user_state->lr);
}

Interrupts are
enabled

Signing saved thread state (kernel & user)

A Study in PAC, bypass #5: state signing gadget
machine_thread_create(thread *thread, ...)
{
 user_state = zalloc(user_ss_zone);

 thread->machine.upcb = user_state;

 user_state = thread->machine.upcb;

 sign_thread_state(user_state,
 user_state->pc,
 user_state->cpsr,
 user_state->lr);
}

Interrupts are
enabled

A Study in PAC, bypass #5: state signing gadget
machine_thread_create(thread *thread, ...)
{
 user_state = zalloc(user_ss_zone);

 thread->machine.upcb = user_state;

 user_state = thread->machine.upcb;

 sign_thread_state(user_state,
 user_state->pc,
 user_state->cpsr,
 user_state->lr);
}

Parameters to sign
are read from

memory

Attacking iPhone XS Max bypass: validation bug

Attacking iPhone XS Max bypass: validation bug

Attacking iPhone XS Max bypass: validation bug

iOS 13 changes

PAC key use in XNU

IA Global code pointer Function pointers, vtable methods

IB Thread-local code pointer Return addresses

DA Global data pointer Vtable pointers

DB Thread-local data pointer (unused)

GA Generic data Thread saved state: PC, LR, CPSR, X16, X17

New protected registers

Signing saved thread state in iOS 13

X16 and X17 should now be safe
from modification during an interrupt

Hardened switch statements
ipc_kmsg_clean_body
 ...
 ADR X25, jpt_FFFFFFF0079CFAF0
 ...
 ...
 CMP W9, #3 ; switch 4 cases
 B.HI def_FFFFFFF0079CFAF0
 LDRSW X9, [X25,X9,LSL#2]
 ADD X9, X9, X25
 BR X9 ; switch jump

ipc_kmsg_clean_body
 ...
 CMP W16, #4 ; switch 5 cases
 B.HI def_FFFFFFF007B8F8B0
 CMP X16, #4
 CSEL X16, X16, XZR, LS
 ADR X17, jpt_FFFFFFF007B8F8B0
 NOP
 LDRSW X16, [X17,X16,LSL#2]
 ADD X16, X17, X16
 BR X16 ; switch jump

Unprotected indirect branches only
use X16 and X17

Analyzing PAC on iOS 13

A Study in PAC, bypass 5: state signing gadget
machine_thread_create(thread *thread, ...)
{
 user_state = zalloc(user_ss_zone);

 thread->machine.upcb = user_state;

 user_state = thread->machine.upcb;

 sign_thread_state(user_state,
 user_state->pc,
 user_state->cpsr,
 user_state->lr);
}

Bypass 5 fix
machine_thread_create(thread *thread, ...)
{
 user_state = zalloc(user_ss_zone);

 thread->machine.upcb = user_state;

 user_state = thread->machine.upcb;

 sign_thread_state(user_state, 0, 0, 0, 0, 0);

}

Bypass 5 fix
machine_thread_create(thread *thread, ...)
{
 user_state = zalloc(user_ss_zone);

 thread->machine.upcb = user_state;

 user_state = thread->machine.upcb;

 sign_thread_state(user_state, 0, 0, 0, 0, 0);

}

Issue: Interrupts
are still enabled!

Bypass 5 fix (assembly)
machine_thread_state_initialize
 ...
 LDR X0, [X19,#thread.upcb] ; arm_context
 CBZ X0, loc_FFFFFFF007CD2A34
 MOV W2, #0 ; cpsr
 MOV X1, #0 ; pc
 MOV X3, #0 ; lr
 MOV X4, #0 ; x16
 MOV X5, #0 ; x17
 BL sign_thread_state
 ...

Imagine getting an
interrupt here

Interrupt exceptions
el1_sp0_fiq_vector_long
 ...
 STP X0, X1, [SP,#arm_context.x0]
 ...
 ADRL X1, fleh_fiq
 B fleh_dispatch64

fleh_dispatch64
 STP X2, X3, [X0,#arm_context.x2]
 STP X4, X5, [X0,#arm_context.x4]
 STP X6, X7, [X0,#arm_context.x6]
 STP X8, X9, [X0,#arm_context.x8]
 ...

thread

kstackptr

X1
X0

X2
X3
X4
X5

X29
LR
SP
PC

CPSR
pac_sig

Interrupt exceptions
el1_sp0_fiq_vector_long
 ...
 STP X0, X1, [SP,#arm_context.x0]
 ...
 ADRL X1, fleh_fiq
 B fleh_dispatch64

fleh_dispatch64
 STP X2, X3, [X0,#arm_context.x2]
 STP X4, X5, [X0,#arm_context.x4]
 STP X6, X7, [X0,#arm_context.x6]
 STP X8, X9, [X0,#arm_context.x8]
 ...

thread

kstackptr

X1
X0

X2
X3
X4
X5

X29
LR
SP
PC

CPSR
pac_sig

Bypass #6: Interrupts during thread state signing
machine_thread_state_initialize
 ...
 LDR X0, [X19,#thread.upcb] ; arm_context
 CBZ X0, loc_FFFFFFF007CD2A34
 MOV W2, #0 ; cpsr
 MOV X1, #0 ; pc
 MOV X3, #0 ; lr
 MOV X4, #0 ; x16
 MOV X5, #0 ; x17
 BL sign_thread_state
 ...

An interrupt here
would spill X0-X5,

allowing an attacker
to change the

parameters being
signed

Finding a better interrupt point
void thread_state64_to_saved_state(new_state, thread_state)
{
 ...
 new_pc = new_state->pc;
 x16 = thread_state->x16;
 x17 = thread_state->x17;
 cpsr = thread_state->cpsr;
 lr = thread_state->lr;
 verify_thread_state(thread_state, thread_state->pc, cpsr,
 lr, x16, x17);
 thread_state->pc = new_pc;
 sign_thread_state(thread_state, new_pc, cpsr,
 lr, x16, x17);
}

thread_state64_to_saved_state
 ...
 MOV X8, X30
 MOV X0, X9 ; arm_context *
 LDP X4, X5, [X0,#arm_context.x16] ; x17
 LDR X6, [X0,#arm_context.pc]
 LDR W7, [X0,#arm_context.cpsr]
 LDR X3, [X0,#arm_context.lr] ; lr
 MOV X1, X6 ; pc
 MOV W2, W7 ; cpsr
 BL verify_thread_state
 MOV X1, X6
 MOV W2, W7 ; cpsr
 MOV X1, X11 ; pc
 STR X1, [X0,#arm_context.pc]
 BL sign_thread_state
 MOV X30, X8
 ...
 RET

thread_state64_to_saved_state
 ...
 MOV X8, X30
 MOV X0, X9 ; arm_context *
 LDP X4, X5, [X0,#arm_context.x16] ; x17
 LDR X6, [X0,#arm_context.pc]
 LDR W7, [X0,#arm_context.cpsr]
 LDR X3, [X0,#arm_context.lr] ; lr
 MOV X1, X6 ; pc
 MOV W2, W7 ; cpsr
 BL verify_thread_state
 MOV X1, X6
 MOV W2, W7 ; cpsr
 MOV X1, X11 ; pc
 STR X1, [X0,#arm_context.pc]
 BL sign_thread_state
 MOV X30, X8
 ...
 RET

LR (X30) saved to
X8 during function

calls

thread_state64_to_saved_state
 ...
 MOV X8, X30
 MOV X0, X9 ; arm_context *
 LDP X4, X5, [X0,#arm_context.x16] ; x17
 LDR X6, [X0,#arm_context.pc]
 LDR W7, [X0,#arm_context.cpsr]
 LDR X3, [X0,#arm_context.lr] ; lr
 MOV X1, X6 ; pc
 MOV W2, W7 ; cpsr
 BL verify_thread_state
 MOV X1, X6
 MOV W2, W7 ; cpsr
 MOV X1, X11 ; pc
 STR X1, [X0,#arm_context.pc]
 BL sign_thread_state
 MOV X30, X8
 ...
 RET

LR (X30) saved to
X8 during function

calls

X8 can be changed
during an interrupt!

Bypass #6 idea
● Thread A: Pin to CPU #4 (receives many interrupts)
● Thread B: Pin to CPU #5 (receives few interrupts)
● Thread A: Loop on thread_set_state()
● Thread B: Monitor CPU #4's cpu_data for an interrupt
● Thread A: Gets interrupted just before "MOV X30, X8"
● Thread B: Overwrite CPU #4's saved X8 register value
● Thread A: Returns from interrupt handler, resumes at "MOV X30, X8"
● Thread A: Executes "RET", jumps to arbitrary PC

Thread B (CPU 5)

User
Kernel

Thread A (CPU 4)

thread_set_state()

thread_state64_to_saved_state
 ...
 MOV X8, X30
 ...
 MOV X30, X8
 ...
 RET

machine_thread_set_state
 ...
 BL thread_state64_to_saved_state
 ...

if (cpu_4_interrupted)
 overwrite_saved_x8()

Thread B (CPU 5)

User
Kernel

Thread A (CPU 4)

thread_set_state()

thread_state64_to_saved_state
 ...
 MOV X8, X30
 ...
 MOV X30, X8
 ...
 RET

machine_thread_set_state
 ...
 BL thread_state64_to_saved_state
 ...

if (cpu_4_interrupted)
 overwrite_saved_x8()

Thread B (CPU 5)

User
Kernel

Thread A (CPU 4)

thread_set_state()

thread_state64_to_saved_state
 ...
 MOV X8, X30
 ...
 MOV X30, X8
 ...
 RET

machine_thread_set_state
 ...
 BL thread_state64_to_saved_state
 ...

if (cpu_4_interrupted)
 overwrite_saved_x8()

Thread B (CPU 5)

User
Kernel

Thread A (CPU 4)

thread_set_state()

thread_state64_to_saved_state
 ...
 MOV X8, X30
 ...
 MOV X30, X8
 ...
 RET

machine_thread_set_state
 ...
 BL thread_state64_to_saved_state
 ...

if (cpu_4_interrupted)
 overwrite_saved_x8()

Thread B (CPU 5)

User
Kernel

Thread A (CPU 4)

thread_set_state()

thread_state64_to_saved_state
 ...
 MOV X8, X30
 ...
 MOV X30, X8
 ...
 RET

machine_thread_set_state
 ...
 BL thread_state64_to_saved_state
 ...

if (cpu_4_interrupted)
 overwrite_saved_x8()

Thread B (CPU 5)

User
Kernel

Thread A (CPU 4)

thread_set_state()

thread_state64_to_saved_state
 ...
 MOV X8, X30
 ...
 MOV X30, X8
 ...
 RET

machine_thread_set_state
 ...
 BL thread_state64_to_saved_state
 ...

if (cpu_4_interrupted)
 overwrite_saved_x8()

Thread B (CPU 5)

User
Kernel

Thread A (CPU 4)

thread_set_state()

thread_state64_to_saved_state
 ...
 MOV X8, X30
 ...
 MOV X30, X8
 ...
 RET

machine_thread_set_state
 ...
 BL thread_state64_to_saved_state
 ...

if (cpu_4_interrupted)
 overwrite_saved_x8()

Thread B (CPU 5)

User
Kernel

Thread A (CPU 4)

thread_set_state()

thread_state64_to_saved_state
 ...
 MOV X8, X30
 ...
 MOV X30, X8
 ...
 RET

machine_thread_set_state
 ...
 BL thread_state64_to_saved_state
 ...

if (cpu_4_interrupted)
 overwrite_saved_x8()

Thread B (CPU 5)

User
Kernel

Thread A (CPU 4)

thread_set_state()

thread_state64_to_saved_state
 ...
 MOV X8, X30
 ...
 MOV X30, X8
 ...
 RET

machine_thread_set_state
 ...
 BL thread_state64_to_saved_state
 ...

if (cpu_4_interrupted)
 overwrite_saved_x8()

Thread B (CPU 5)

User
Kernel

Thread A (CPU 4)

thread_set_state()

thread_state64_to_saved_state
 ...
 MOV X8, X30
 ...
 MOV X30, X8
 ...
 RET

X1
X0

X8

X29
LR
SP
PC

CPSR
pac_sig

X2

machine_thread_set_state
 ...
 BL thread_state64_to_saved_state
 ...

if (cpu_4_interrupted)
 overwrite_saved_x8()

Thread B (CPU 5)

User
Kernel

Thread A (CPU 4)

thread_set_state()

thread_state64_to_saved_state
 ...
 MOV X8, X30
 ...
 MOV X30, X8
 ...
 RET

X1
X0

X8

X29
LR
SP
PC

CPSR
pac_sig

X2

machine_thread_set_state
 ...
 BL thread_state64_to_saved_state
 ...

if (cpu_4_interrupted)
 overwrite_saved_x8()

el1_sp0_fiq_vector_long
 ...
 ERET

CPU 4:
Execute interrupt

handler

Thread B (CPU 5)

User
Kernel

Thread A (CPU 4)

thread_set_state()

thread_state64_to_saved_state
 ...
 MOV X8, X30
 ...
 MOV X30, X8
 ...
 RET

X1
X0

X8

X29
LR
SP
PC

CPSR
pac_sig

X2

machine_thread_set_state
 ...
 BL thread_state64_to_saved_state
 ...

if (cpu_4_interrupted)
 overwrite_saved_x8()

el1_sp0_fiq_vector_long
 ...
 ERET

CPU 4:
Execute interrupt

handler

Thread B (CPU 5)

User
Kernel

Thread A (CPU 4)

thread_set_state()

thread_state64_to_saved_state
 ...
 MOV X8, X30
 ...
 MOV X30, X8
 ...
 RET

X1
X0

X8

X29
LR
SP
PC

CPSR
pac_sig

X2

machine_thread_set_state
 ...
 BL thread_state64_to_saved_state
 ...

if (cpu_4_interrupted)
 overwrite_saved_x8()

el1_sp0_fiq_vector_long
 ...
 ERET

CPU 4:
Execute interrupt

handler

Thread B (CPU 5)

User
Kernel

Thread A (CPU 4)

thread_set_state()

thread_state64_to_saved_state
 ...
 MOV X8, X30
 ...
 MOV X30, X8
 ...
 RET

X1
X0

X8

X29
LR
SP
PC

CPSR
pac_sig

X2

machine_thread_set_state
 ...
 BL thread_state64_to_saved_state
 ...

if (cpu_4_interrupted)
 overwrite_saved_x8()

el1_sp0_fiq_vector_long
 ...
 ERET

CPU 4:
Execute interrupt

handler

Thread B (CPU 5)

User
Kernel

Thread A (CPU 4)

thread_set_state()

thread_state64_to_saved_state
 ...
 MOV X8, X30
 ...
 MOV X30, X8
 ...
 RET

X1
X0

X8

X29
LR
SP
PC

CPSR
pac_sig

X2

machine_thread_set_state
 ...
 BL thread_state64_to_saved_state
 ...

if (cpu_4_interrupted)
 overwrite_saved_x8()

el1_sp0_fiq_vector_long
 ...
 ERET

CPU 4:
Execute interrupt

handler

Thread B (CPU 5)

User
Kernel

Thread A (CPU 4)

thread_set_state()

thread_state64_to_saved_state
 ...
 MOV X8, X30
 ...
 MOV X30, X8
 ...
 RET

X1
X0

X8

X29
LR
SP
PC

CPSR
pac_sig

X2

machine_thread_set_state
 ...
 BL thread_state64_to_saved_state
 ...

if (cpu_4_interrupted)
 overwrite_saved_x8()

el1_sp0_fiq_vector_long
 ...
 ERET

CPU 4:
Execute interrupt

handler

Thread B (CPU 5)

User
Kernel

Thread A (CPU 4)

thread_set_state()

thread_state64_to_saved_state
 ...
 MOV X8, X30
 ...
 MOV X30, X8
 ...
 RET

X1
X0

X8

X29
LR
SP
PC

CPSR
pac_sig

X2

machine_thread_set_state
 ...
 BL thread_state64_to_saved_state
 ...

if (cpu_4_interrupted)
 overwrite_saved_x8()

el1_sp0_fiq_vector_long
 ...
 ERET

CPU 4:
Execute interrupt

handler

Thread B (CPU 5)

User
Kernel

Thread A (CPU 4)

thread_set_state()

thread_state64_to_saved_state
 ...
 MOV X8, X30
 ...
 MOV X30, X8
 ...
 RET

machine_thread_set_state
 ...
 BL thread_state64_to_saved_state
 ...

if (cpu_4_interrupted)
 overwrite_saved_x8()

Thread B (CPU 5)

User
Kernel

Thread A (CPU 4)

thread_set_state()

thread_state64_to_saved_state
 ...
 MOV X8, X30
 ...
 MOV X30, X8
 ...
 RET

machine_thread_set_state
 ...
 BL thread_state64_to_saved_state
 ...

if (cpu_4_interrupted)
 overwrite_saved_x8()

Thread B (CPU 5)

User
Kernel

Thread A (CPU 4)

thread_set_state()

thread_state64_to_saved_state
 ...
 MOV X8, X30
 ...
 MOV X30, X8
 ...
 RET

machine_thread_set_state
 ...
 BL thread_state64_to_saved_state
 ...

if (cpu_4_interrupted)
 overwrite_saved_x8()

Thread B (CPU 5)

User
Kernel

Thread A (CPU 4)

thread_set_state()

thread_state64_to_saved_state
 ...
 MOV X8, X30
 ...
 MOV X30, X8
 ...
 RET

machine_thread_set_state
 ...
 BL thread_state64_to_saved_state
 ...

if (cpu_4_interrupted)
 overwrite_saved_x8()

Thread B (CPU 5)

User
Kernel

Thread A (CPU 4)

thread_set_state()

thread_state64_to_saved_state
 ...
 MOV X8, X30
 ...
 MOV X30, X8
 ...
 RET

machine_thread_set_state
 ...
 BL thread_state64_to_saved_state
 ...

if (cpu_4_interrupted)
 overwrite_saved_x8()

Thread B (CPU 5)

User
Kernel

Thread A (CPU 4)

thread_set_state()

thread_state64_to_saved_state
 ...
 MOV X8, X30
 ...
 MOV X30, X8
 ...
 RET

machine_thread_set_state
 ...
 BL thread_state64_to_saved_state
 ...

if (cpu_4_interrupted)
 overwrite_saved_x8()

PC control!

DEMO

Bypass #6: Interrupts during thread state signing
machine_thread_state_initialize
 ...
 LDR X0, [X19,#thread.upcb] ; arm_context
 CBZ X0, loc_FFFFFFF007CD2A34
 MOV W2, #0 ; cpsr
 MOV X1, #0 ; pc
 MOV X3, #0 ; lr
 MOV X4, #0 ; x16
 MOV X5, #0 ; x17
 BL sign_thread_state
 ...

Interrupts during
thread state signing

are unsafe

Bypass #7: Interrupts during PACIA
● Another variant of the same bypass
● Interrupts are not just problematic for sign_thread_state()

__bcopyin
 ...
 MRS X10, TPIDR_EL1 ;; thread
 ADRL X3, copyio_error
 ADD X11, X10, #thread.recover
 MOVK X11, #0x1E02,LSL#48
 PACIA X3, X11
 LDR X11, [X10,#thread.recover]
 STR X3, [X10,#thread.recover]
 ...

Bypass #7: Interrupts during PACIA
● Another variant of the same bypass
● Interrupts are not just problematic for sign_thread_state()

__bcopyin
 ...
 MRS X10, TPIDR_EL1 ;; thread
 ADRL X3, copyio_error
 ADD X11, X10, #thread.recover
 MOVK X11, #0x1E02,LSL#48
 PACIA X3, X11
 LDR X11, [X10,#thread.recover]
 STR X3, [X10,#thread.recover]
 ...

An interrupt here would
spill X3 and X11, which

are unprotected

Bypass #8: LR spilled during exceptions
● EL1 exception vectors spill

LR to memory
● LR read back before

sign_thread_state()

● Overwrite spilled LR before
signature is generated

el1_sp0_fiq_vector_long
 MSR SPSel, #0 ; SP_EL0
 SUB SP, SP, #0x350
 STP X0, X1, [SP,#arm_context.x0]
 ...
 STP X29, X30, [SP,#arm_context.x29]
 ...
 B fleh_dispatch64

fleh_dispatch64
 STP X2, X3, [X0,#arm_context.x2]
 ...
 MOV X1, X30 ; pc
 MOV W2, W23 ; cpsr
 LDR X3, [X0,#arm_context.lr] ; lr
 MOV X4, X16 ; x16
 MOV X5, X17 ; x17
 BL sign_thread_state

Bypass #8: LR spilled during exceptions
● EL1 exception vectors spill

LR to memory
● LR read back before

sign_thread_state()

● Overwrite spilled LR before
signature is generated

el1_sp0_fiq_vector_long
 MSR SPSel, #0 ; SP_EL0
 SUB SP, SP, #0x350
 STP X0, X1, [SP,#arm_context.x0]
 ...
 STP X29, X30, [SP,#arm_context.x29]
 ...
 B fleh_dispatch64

fleh_dispatch64
 STP X2, X3, [X0,#arm_context.x2]
 ...
 MOV X1, X30 ; pc
 MOV W2, W23 ; cpsr
 LDR X3, [X0,#arm_context.lr] ; lr
 MOV X4, X16 ; x16
 MOV X5, X17 ; x17
 BL sign_thread_state

Bypass #8: LR spilled during exceptions

spin_while_zero
 LDR X1, [X0]
 CBZ X1, spin_while_zero
 RET

Bypass #8: LR spilled during exceptions

el1_sp0_fiq_vector_long
 ...
 STP X29, X30, [SP,#arm_context.x29]
 ...
 B fleh_dispatch64

fleh_dispatch64
 ...
 LDR X3, [X0,#arm_context.lr] ; lr
 ...
 BL sign_thread_state
 ...

spin_while_zero
 LDR X1, [X0]
 CBZ X1, spin_while_zero
 RET

X1
X0

X2
X3
X4
X5

X29
LR
SP
PC

CPSR
pac_sig

Bypass #8: LR spilled during exceptions

el1_sp0_fiq_vector_long
 ...
 STP X29, X30, [SP,#arm_context.x29]
 ...
 B fleh_dispatch64

fleh_dispatch64
 ...
 LDR X3, [X0,#arm_context.lr] ; lr
 ...
 BL sign_thread_state
 ...

spin_while_zero
 LDR X1, [X0]
 CBZ X1, spin_while_zero
 RET

X1
X0

X2
X3
X4
X5

X29
LR
SP
PC

CPSR
pac_sig

Bypass #8: LR spilled during exceptions

el1_sp0_fiq_vector_long
 ...
 STP X29, X30, [SP,#arm_context.x29]
 ...
 B fleh_dispatch64

fleh_dispatch64
 ...
 LDR X3, [X0,#arm_context.lr] ; lr
 ...
 BL sign_thread_state
 ...

spin_while_zero
 LDR X1, [X0]
 CBZ X1, spin_while_zero
 RET

X1
X0

X2
X3
X4
X5

X29
LR
SP
PC

CPSR
pac_sig

Bypass #8: LR spilled during exceptions

el1_sp0_fiq_vector_long
 ...
 STP X29, X30, [SP,#arm_context.x29]
 ...
 B fleh_dispatch64

fleh_dispatch64
 ...
 LDR X3, [X0,#arm_context.lr] ; lr
 ...
 BL sign_thread_state
 ...

spin_while_zero
 LDR X1, [X0]
 CBZ X1, spin_while_zero
 RET

X1
X0

X2
X3
X4
X5

X29
LR
SP
PC

CPSR
pac_sig

Bypass #8: LR spilled during exceptions

el1_sp0_fiq_vector_long
 ...
 STP X29, X30, [SP,#arm_context.x29]
 ...
 B fleh_dispatch64

fleh_dispatch64
 ...
 LDR X3, [X0,#arm_context.lr] ; lr
 ...
 BL sign_thread_state
 ...

spin_while_zero
 LDR X1, [X0]
 CBZ X1, spin_while_zero
 RET

X1
X0

X2
X3
X4
X5

X29
LR
SP
PC

CPSR
pac_sig

Bypass #8: LR spilled during exceptions

el1_sp0_fiq_vector_long
 ...
 STP X29, X30, [SP,#arm_context.x29]
 ...
 B fleh_dispatch64

fleh_dispatch64
 ...
 LDR X3, [X0,#arm_context.lr] ; lr
 ...
 BL sign_thread_state
 ...

spin_while_zero
 LDR X1, [X0]
 CBZ X1, spin_while_zero
 RET

X1
X0

X2
X3
X4
X5

X29
LR
SP
PC

CPSR
pac_sig

Bypass #8: LR spilled during exceptions

el1_sp0_fiq_vector_long
 ...
 STP X29, X30, [SP,#arm_context.x29]
 ...
 B fleh_dispatch64

fleh_dispatch64
 ...
 LDR X3, [X0,#arm_context.lr] ; lr
 ...
 BL sign_thread_state
 ...

spin_while_zero
 LDR X1, [X0]
 CBZ X1, spin_while_zero
 RET

X1
X0

X2
X3
X4
X5

X29
LR
SP
PC

CPSR
pac_sig

Bypass #8: LR spilled during exceptions

el1_sp0_fiq_vector_long
 ...
 STP X29, X30, [SP,#arm_context.x29]
 ...
 B fleh_dispatch64

fleh_dispatch64
 ...
 LDR X3, [X0,#arm_context.lr] ; lr
 ...
 BL sign_thread_state
 ...

spin_while_zero
 LDR X1, [X0]
 CBZ X1, spin_while_zero
 RET

X1
X0

X2
X3
X4
X5

X29
LR
SP
PC

CPSR
pac_sig

Signed state with
controlled LR

Bypass #8: LR spilled during exceptions

Reading parameters from
memory before

sign_thread_state() is
always insecure

el1_sp0_fiq_vector_long
 MSR SPSel, #0 ; SP_EL0
 SUB SP, SP, #0x350
 STP X0, X1, [SP,#arm_context.x0]
 ...
 STP X29, X30, [SP,#arm_context.x29]
 ...
 B fleh_dispatch64

fleh_dispatch64
 STP X2, X3, [X0,#arm_context.x2]
 ...
 MOV X1, X30 ; pc
 MOV W2, W23 ; cpsr
 LDR X3, [X0,#arm_context.lr] ; lr
 MOV X4, X16 ; x16
 MOV X5, X17 ; x17
 BL sign_thread_state

Bypass #9: Switch_context() / Idle_context()
Switch_context
 CBNZ X1, have_continuation__no_need_to_save
 LDR X3, [X0,#thread.kstackptr]
 STP X16, X17, [X3,#arm_context.x16]
 STP X19, X20, [X3,#arm_context.x19]
 ...
 STP X29, X30, [X3,#arm_context.x29]
 ...
 MOV X0, X3 ; arm_context
 LDR X1, [X0,#arm_context.pc] ; pc
 LDR W2, [X0,#arm_context.cpsr] ; cpsr
 MOV X3, X30 ; lr
 MOV X4, X16 ; x16
 MOV X5, X17 ; x17
 BL sign_thread_state
 ...
 RET

Bypass #9: Switch_context() / Idle_context()
Switch_context
 CBNZ X1, have_continuation__no_need_to_save
 LDR X3, [X0,#thread.kstackptr]
 STP X16, X17, [X3,#arm_context.x16]
 STP X19, X20, [X3,#arm_context.x19]
 ...
 STP X29, X30, [X3,#arm_context.x29]
 ...
 MOV X0, X3 ; arm_context
 LDR X1, [X0,#arm_context.pc] ; pc
 LDR W2, [X0,#arm_context.cpsr] ; cpsr
 MOV X3, X30 ; lr
 MOV X4, X16 ; x16
 MOV X5, X17 ; x17
 BL sign_thread_state
 ...
 RET

PC and CPSR are read
from memory before

signing

Bypass #9: Switch_context() / Idle_context()
● Switch_context() manages thread states for voluntary kernel context

switches
○ PC and CPSR are not needed/used

● While thread is active, write arbitrary PC+CPSR into its saved state blob
● Switch_context() is called, reads PC+CPSR, signs them into the saved state
● Use the saved state for an exception return with arbitrary PC+CPSR

There's a bigger issue here...

Design issue
● Fundamentally, there are 2 ways that signed thread states are used

1. During exception return, via exception_return
2. During kernel thread context switch, via Switch_context()

● These uses have different security requirements
○ exception_return to EL1 needs PC, CPSR, LR protected
○ exception_return to EL0 only needs CPSR protected
○ Switch_context() only needs LR protected

● Since thread states can be used in 2 different ways, thread states signed for
Switch_context() should not be usable by exception_return and vice
versa

● But there's only one sign_thread_state()...
○ Thread states signed for one purpose can be swapped and used for the other

Bypass #9: Switch_context() / Idle_context()
● Fundamental issue: Thread state signed by Switch_context() for context

switching (which does not care about PC+CPSR) can instead be used for
exception returns (which do)

● What about the inverse?

Bypass #10: Swapping user & kernel thread states
● thread_set_state()

syscall can be used to set
registers for user threads

● CPSR is restricted to EL0,
but LR is unrestricted

○ Could place a kernel pointer in
user LR; it would just fault

● Interacts poorly with
Switch_context(), which
uses LR but ignores CPSR

thread_state64_to_saved_state()
{
 verify_thread_state(state, pc,
 cpsr, lr, x16, x17);
 state->lr = new_lr;
 sign_thread_state(state, pc,
 cpsr, new_lr, x16, x17);

 new_cpsr = new_state->cpsr & ~0x1F;
 verify_thread_state(state, pc,
 cpsr, new_lr, x16, x17);
 state->cpsr = new_cpsr;
 sign_thread_state(state, pc,
 new_cpsr, new_lr, x16, x17);
}

Bypass #10: Swapping user & kernel thread states
● Thread A: Block thread A by sending a Mach message to a filled Mach port
● Thread A: Register state is saved by Switch_context()
● Thread B: Set thread_A->user_state = thread_A->kernel_state
● Thread B: Call thread_set_state(thread_A) to set kernel_state's LR to

an arbitrary address and sign
● Thread B: Unblock thread A by receiving a Mach message on the filled port
● Thread A: Switch_context() to A causes a RET to the arbitrary address

100% reliable and deterministic

Thread B

User
Kernel

Thread A

mach_msg()

X25
X24

X26

X29

SP
PC

CPSR
pac_sig

X23

swap_user_to_kernel_state()
thread_set_state()

X28
X27

thread A

kstackptr

upcb

X1
X0

X2
X3
X4
X5

X29
LR
SP
PC

CPSR
pac_sig

Kernel state
User state

LR

Thread B

User
Kernel

Thread A

mach_msg()

X25
X24

X26

X29

SP
PC

CPSR
pac_sig

X23

thread_block_reason
 ...
 BL Switch_context
 ...

swap_user_to_kernel_state()
thread_set_state()

X28
X27

thread A

kstackptr

upcb

X1
X0

X2
X3
X4
X5

X29
LR
SP
PC

CPSR
pac_sig

Kernel state
User state

LR

Thread B

User
Kernel

Thread A

mach_msg()

Switch_context
 ...
 STP X29, X30, [X3,#arm_context.x29]
 ...
 LDR X3, [X0,#arm_context.lr]
 ...
 MOV X30, X3
 ...
 RET

X25
X24

X26

X29

SP
PC

CPSR
pac_sig

X23

thread_block_reason
 ...
 BL Switch_context
 ...

swap_user_to_kernel_state()
thread_set_state()

X28
X27

thread A

kstackptr

upcb

X1
X0

X2
X3
X4
X5

X29
LR
SP
PC

CPSR
pac_sig

Kernel state
User state

LR

Thread B

User
Kernel

Thread A

mach_msg()

Switch_context
 ...
 STP X29, X30, [X3,#arm_context.x29]
 ...
 LDR X3, [X0,#arm_context.lr]
 ...
 MOV X30, X3
 ...
 RET

X25
X24

X26

X29

SP
PC

CPSR
pac_sig

X23

thread_block_reason
 ...
 BL Switch_context
 ...

swap_user_to_kernel_state()
thread_set_state()

X28
X27

thread A

kstackptr

upcb

X1
X0

X2
X3
X4
X5

X29
LR
SP
PC

CPSR
pac_sig

Kernel state
User state

LR

Thread B

User
Kernel

Thread A

mach_msg()

Switch_context
 ...
 STP X29, X30, [X3,#arm_context.x29]
 ...
 LDR X3, [X0,#arm_context.lr]
 ...
 MOV X30, X3
 ...
 RET

X25
X24

X26

X29

SP
PC

CPSR
pac_sig

X23

thread_block_reason
 ...
 BL Switch_context
 ...

swap_user_to_kernel_state()
thread_set_state()

X28
X27

thread A

kstackptr

upcb

X1
X0

X2
X3
X4
X5

X29
LR
SP
PC

CPSR
pac_sig

Kernel state
User state

LR

blocked

Thread B

User
Kernel

Thread A

mach_msg()

Switch_context
 ...
 STP X29, X30, [X3,#arm_context.x29]
 ...
 LDR X3, [X0,#arm_context.lr]
 ...
 MOV X30, X3
 ...
 RET

X25
X24

X26

X29

SP
PC

CPSR
pac_sig

X23

thread_block_reason
 ...
 BL Switch_context
 ...

swap_user_to_kernel_state()
thread_set_state()

X28
X27

thread A

kstackptr

upcb

X1
X0

X2
X3
X4
X5

X29
LR
SP
PC

CPSR
pac_sig

Kernel state
User state

LR

blocked

Thread B

User
Kernel

Thread A

mach_msg()

Switch_context
 ...
 STP X29, X30, [X3,#arm_context.x29]
 ...
 LDR X3, [X0,#arm_context.lr]
 ...
 MOV X30, X3
 ...
 RET

X25
X24

X26

X29

SP
PC

CPSR
pac_sig

X23

thread_block_reason
 ...
 BL Switch_context
 ...

swap_user_to_kernel_state()
thread_set_state()

X28
X27

thread A

kstackptr

upcb

X1
X0

X2
X3
X4
X5

X29
LR
SP
PC

CPSR
pac_sig

Kernel state
User state

LR

blocked

Thread B

User
Kernel

Thread A

mach_msg()

Switch_context
 ...
 STP X29, X30, [X3,#arm_context.x29]
 ...
 LDR X3, [X0,#arm_context.lr]
 ...
 MOV X30, X3
 ...
 RET

X25
X24

X26

X29

SP
PC

CPSR
pac_sig

X23

thread_block_reason
 ...
 BL Switch_context
 ...

swap_user_to_kernel_state()
thread_set_state()

X28
X27

thread A

kstackptr

upcb

X1
X0

X2
X3
X4
X5

X29
LR
SP
PC

CPSR
pac_sig

Kernel state
User state

LR

blocked

Thread B

User
Kernel

Thread A

mach_msg()

Switch_context
 ...
 STP X29, X30, [X3,#arm_context.x29]
 ...
 LDR X3, [X0,#arm_context.lr]
 ...
 MOV X30, X3
 ...
 RET

X25
X24

X26

X29

SP
PC

CPSR
pac_sig

X23

thread_block_reason
 ...
 BL Switch_context
 ...

swap_user_to_kernel_state()
thread_set_state()

X28
X27

thread A

kstackptr

upcb

X1
X0

X2
X3
X4
X5

X29
LR
SP
PC

CPSR
pac_sig

Kernel state
User state

LR

blocked

Thread B

User
Kernel

Thread A

mach_msg()

Switch_context
 ...
 STP X29, X30, [X3,#arm_context.x29]
 ...
 LDR X3, [X0,#arm_context.lr]
 ...
 MOV X30, X3
 ...
 RET

X25
X24

X26

X29

SP
PC

CPSR
pac_sig

X23

thread_block_reason
 ...
 BL Switch_context
 ...

swap_user_to_kernel_state()
thread_set_state()

X28
X27

thread A

kstackptr

upcb

X1
X0

X2
X3
X4
X5

X29
LR
SP
PC

CPSR
pac_sig

Kernel state
User state

LR

Thread B

User
Kernel

Thread A

mach_msg()

Switch_context
 ...
 STP X29, X30, [X3,#arm_context.x29]
 ...
 LDR X3, [X0,#arm_context.lr]
 ...
 MOV X30, X3
 ...
 RET

X25
X24

X26

X29

SP
PC

CPSR
pac_sig

X23

thread_block_reason
 ...
 BL Switch_context
 ...

swap_user_to_kernel_state()
thread_set_state()

X28
X27

thread A

kstackptr

upcb

X1
X0

X2
X3
X4
X5

X29
LR
SP
PC

CPSR
pac_sig

Kernel state
User state

LR

Thread B

User
Kernel

Thread A

mach_msg()

Switch_context
 ...
 STP X29, X30, [X3,#arm_context.x29]
 ...
 LDR X3, [X0,#arm_context.lr]
 ...
 MOV X30, X3
 ...
 RET

X25
X24

X26

X29

SP
PC

CPSR
pac_sig

X23

thread_block_reason
 ...
 BL Switch_context
 ...

swap_user_to_kernel_state()
thread_set_state()

X28
X27

thread A

kstackptr

upcb

X1
X0

X2
X3
X4
X5

X29
LR
SP
PC

CPSR
pac_sig

Kernel state
User state

LR

Thread B

User
Kernel

Thread A

mach_msg()

Switch_context
 ...
 STP X29, X30, [X3,#arm_context.x29]
 ...
 LDR X3, [X0,#arm_context.lr]
 ...
 MOV X30, X3
 ...
 RET

X25
X24

X26

X29

SP
PC

CPSR
pac_sig

X23

thread_block_reason
 ...
 BL Switch_context
 ...

swap_user_to_kernel_state()
thread_set_state()

X28
X27

thread A

kstackptr

upcb

X1
X0

X2
X3
X4
X5

X29
LR
SP
PC

CPSR
pac_sig

Kernel state
User state

LR

Thread B

User
Kernel

Thread A

mach_msg()

Switch_context
 ...
 STP X29, X30, [X3,#arm_context.x29]
 ...
 LDR X3, [X0,#arm_context.lr]
 ...
 MOV X30, X3
 ...
 RET

X25
X24

X26

X29

SP
PC

CPSR
pac_sig

X23

thread_block_reason
 ...
 BL Switch_context
 ...

swap_user_to_kernel_state()
thread_set_state()

X28
X27

thread A

kstackptr

upcb

X1
X0

X2
X3
X4
X5

X29
LR
SP
PC

CPSR
pac_sig

Kernel state
User state

LR

Thread B

User
Kernel

Thread A

mach_msg()

Switch_context
 ...
 STP X29, X30, [X3,#arm_context.x29]
 ...
 LDR X3, [X0,#arm_context.lr]
 ...
 MOV X30, X3
 ...
 RET

X25
X24

X26

X29

SP
PC

CPSR
pac_sig

X23

thread_block_reason
 ...
 BL Switch_context
 ...

swap_user_to_kernel_state()
thread_set_state()

X28
X27

thread A

kstackptr

upcb

X1
X0

X2
X3
X4
X5

X29
LR
SP
PC

CPSR
pac_sig

Kernel state
User state

LR

Thread B

User
Kernel

Thread A

mach_msg()

Switch_context
 ...
 STP X29, X30, [X3,#arm_context.x29]
 ...
 LDR X3, [X0,#arm_context.lr]
 ...
 MOV X30, X3
 ...
 RET

X25
X24

X26

X29

SP
PC

CPSR
pac_sig

X23

thread_block_reason
 ...
 BL Switch_context
 ...

swap_user_to_kernel_state()
thread_set_state()

X28
X27

thread A

kstackptr

upcb

X1
X0

X2
X3
X4
X5

X29
LR
SP
PC

CPSR
pac_sig

Kernel state
User state

LR

PC control!

DEMO

Takeaways

iOS kernel PAC bypasses
iOS 12 iOS 13

PAC signing gadget 1 1

PAC bruteforce gadget 1

Thread state signing gadget 2 2

Unprotected indirect branch 1

Implementation bug 1

Reusing signed states (design issue) 2

More thorough analysis could have helped
● PAC still feels quite ad hoc in iOS 13

○ What is the formal security model?
○ There might be a few fundamental issues remaining

● iOS 12: Apple fixed the POCs, but not the underlying issue
○ Interrupts were explicitly called out as attack vectors

● Important to look at the compiler output
○ Some issues don't appear in the C code
○ Pop the kernel into your favorite disassembler

PAC is still a good mitigation
● PAC as an exploit mitigation is independent of PAC as kernel CFI
● It has been quite successful at limiting exploitability of certain bug classes

○ Force attackers to use better bugs

● Lots of untapped potential in data PAC
○ Promising improvements in iOS 14

Kernel PAC bypasses are not that important
● In the world of LPE, a kernel PAC bypass seems like the cherry-on-top
● Perhaps an expensive upcharge when selling an exploit?

○ Used to maintain legacy implants that rely on kernel function calls?

● But kernel CFI is not the last line of defense keeping your device safe
○ Hardening the kernel is still more important for end user security

